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NISAR SAR Systems Implementing 
SweepSAR Architecture/Technique

• NISAR SAR system design is based on “SweepSAR” architecture studied 
by JPL/DLR jointly for DESDynI/Tandem-L, which focused on wide-swath 
imaging capability

• The chosen SweepSAR architecture employs a large reflector with an 
active arrayed feed to form multiple high EIRP beams system in elevation
• On Tx all beams are activated (transmitting) simultaneously with each beam 

“illuminating” a subswath and all beams together illuminating the desired 
wide swath, forming an effective wide antenna Tx pattern

• On Rx the echoes are ”sweeping” over the feed, received by each T/R 
modules, sorted per beam echo return time/angle, followed by digital beam 
forming to reconstruct beam overlaps and concatenate into long echoes, 
forming an effective receive Rx pattern

• The system performance (in sensitivity or NES0) is dictated by having high 
EIRP Tx beams on Tx and well designed digital beam forming on Rx

• The SweepSAR architecture/technique 
• Provides wide-swath coverage with full azimuth integration gain, full 

utilization azimuth aperture (as opposed to SweepSAR for which the azimuth 
aperture time is divided by number of subswath)

• Eases up dual-frequency SAR implementation by both instruments sharing 
the same reflector

• Takes advantage of technologies available of light-weight compact stow 
volume reflector and high-efficient high power RF technologies 

• But requires more sophisticate complex high speed onboard processing and 
different calibration considerations        

SweepSAR architecture/technique

Effective receive Rx pattern for 
different (1, 3, 5, 7 taps) digital 

beam formers 
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ScanSAR vs. SweepSAR

CDR 09.2 – 3

• ScanSAR electronically (by controlling the phasing of the 
phased array) scans a single beam in cross-track (elevation) 
to illuminate each subswath cyclically  

SweepSAR uses multiple sub-beams in cross-track (elevation) 
with each sub-beam illuminating overlapped sub-swaths for 
wide-swath imaging   



Config. 128 (Dual-Pol) Unit Req. HH Beam #6 CBE

PRF Hz - 1650

Bandwidth MHz - 20

Pulsewidth us - 20

Tx power W 1200 1404

Tx Gain dBi 33.5 33.9

Rx Gain dBi 40.1 41.5

System Loss dB – 2.7 – 2.0

System Temp K 750 657

Quant Noise dB – 19.0 – 20.0

Ambiguity dB – 20.0 – 24.8

NES0 dB – 23.0 – 27.8

NISAR L-band SAR Design Controlled Parameters & 
Projected Performance (Sample Cases)

• NISAR L-band SAR System 
• Employs a 12m offset reflector with 12 dual-pol channel/beam, 

each consisting of a 116 W T/R model and dual-patch feed 
element, creating 12 1°pencil beams in elevation

• Implements full polarimetric system that can be operated with 
single-pol, dual-pol, quad-pol, compact-pol configurations

• Provides 10, 20, 40, 80 MHz waveforms with addition of 5 
MHz waveform for split spectrum measurements

• Provides PRF dithering capabilities to remove transmit gaps 
with slightly degraded performance

Single-Look NES0

Multi-Look NES0

Swath 242 Km (>15km overlap)

Req. NES0

Req. Ambiguity

Single-Look NES0
Multi-Look NES0

Examples: Dual-Pol HH (top); Quad-Pol HV (bottom)
Ground Cross-Swath from Nadir (Km)
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Req. NES0

Swath 242 Km (> 15km overlap)
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Example: Configuration 128 Dual-Pol HH  “Beam” #6 Controlled Table
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Definition: Resolution, Coherence, Calibration 

• [Note: Spatial Resolution and ISLR assume 0.7 Hamming weighted; Coherence,  Radiometric Error include 
multi-look for 100mx100m product spatial resolution.]

• Spatial Resolution (relative to ideal) is determined by system performance during one chirp and from chirp 
to chirp
• Specifically, overall bandwidths plus amplitude and phase errors
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• Post-Calibration Error (Uncertainty) Kpr is the residual errors after calibration, including amplitude and 
phase errors, attributed to short-term and long-term stabilities/drift
• Estimated from the stability of assemblies and how well those changes are being monitored and can be 

removed
• Radiometric Error is RSS’ed of radiometric resolution (Ksrr) and calibration residual error (Kpr).

• Coherence 𝛾!"! is determined by total signal to noise.
• Short term (random) amplitude and phase errors contributed 

to ISLR, reducing coherence

• Radiometric Resolution Ksrr is measurement uncertainty 
(precision) 
• Backscatter dependent – cannot be calibrated out but 

can be re-estimated 
• Can be improved with higher EIRP and/or averaging 

more looks
• Short term (random) amplitude and phase errors 

contributed to ISLR, worsening the radiometric resolution
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SAR System Performance Errors Sources

• Beam forming
• BFPQ

• Digitization
• Filtering
• Cal estimation

• TX amplification/ø-shift
• RX signal filtering
• TX/RX/Cal routing

• RF radiation
• Primary 
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Internal Calibration Implementation 
and External Calibration Plan

• Post-calibration error Kpr refers to residual errors (uncertainties) after 
systematic biases have been removed. The use of internal calibration 
with external calibration is to determine those biases and bias changes.

• For SweepSAR system having Tx manifolds (1:12 Tx distribution) and 
Rx manifolds (12:1 Rx combination), non-equality/non-uniformity among 
channels would be minimized before flight, but those may change in 
flight

• Internal Calibration: Each TRM includes Tx, Rx, Bypass Cal paths to 
allow for injection of chirp/tone to:  
• Perform on-board estimate of each channel (tx/rec mag/phase) and 

include those estimates in the radar meta data
• Evaluate changes between channels; if changes exceed a pre-

determined value, apply correction/adjustment to the channels
• Still has residual error in onboard estimate and correction

• External Calibration: Use processed images over corner reflector array 
site and known homogeneous target areas to:
• Determine system bias (against the true RCS) over the entire swath 
• Assess system bias changes, in particular for the part of the system 

(radar antenna) not in the internal cal loop
• Determine radar antenna pointing error and change
• Determine polarimetric channel imbalance/cross-talk
• Still has residual error in measurement uncertainties associated with 

corner reflector (background+noise) and homogenous area (Ksrr)
CDR 09.2 – 7
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NISAR L-band TRM Cal Paths

Proposed CR Array Cal Site 



NISAR L-band SAR Projected Performance 
and [Post-Cal] System Errors

[1] Worse case estimated values over modes (configurations) and polarization against the mode-
targeted backscatters. 

[2] Swath-averaged with multi-look weighted processing, post-calibration; A is target dependent 
[3]  Swath-averaged; combined SNR/AMB with TRM measurements of mag/phase ripple and jitters. 
[4]  % broadening against weighted single-look theoretical; include mag/phase contributions

Requirements Req. CBE (at CDR) Source
Swath-avg’d NEs0 (SP/DP/QP) [1] ≤ – 23 dB – 25.4 dB Model

Swath-avg’d ambiguity (SP/DP) [1] ≤ – 20 dB – 24.3 dB Model

Swath-avg’d ambiguity (QP) [1] ≤ – 15 dB – 16.0 dB Model

Swath-avg’d co-pol radiometric error  [2] 0.9 dB 0.71 dB RSS’ed A &B

A. Random co-pol error (Ksrr) 0.50 dB 0.50 dB Model/Measured

B. Sys. co-pol cal error (Kpr) 0.75 dB 0.51 dB Stacked Up

Swath-avg’d cx-pol radiometric error [2] 1.2 dB 1.15 dB RSS’ed A & B

A. Random cx-pol error (Ksrr) 0.79 dB 0.82 dB Model/Measured

B. Sys, cx-pol cal error (Kpr) 0.90 dB 0.78 dB Stacked Up

Systematic Phase error 3.0° 2.5o Stacked Up

Coherence  [3] 0.85 0.86 Model/Measured

Azimuth resolution broadening [4] < 15% < 0.5% Measured

Slant range resolution broadening [4] < 10% 3.9% Measured

Swath overlap at equatorial crossing > 10 km >15 km Model
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